Let's create separate object classes for data reading, automated data reading of an entire directory, plotting (single plot), and automated plotting using the @abstractmethod
approach.
from abc import ABC, abstractmethod
class DataReader(ABC):
@abstractmethod
def read_data(self, file_path):
pass
class DataPlotter(ABC):
@abstractmethod
def plot_data(self, data):
pass
import pandas as pd
class CSVDataReader(DataReader):
def read_data(self, file_path):
# Implement CSV data reading logic here
return pd.read_csv(file_path)
class DirectoryDataReader(DataReader):
def read_data(self, directory_path):
# Implement automated data reading from directory logic here
data_list = []
# Iterate through all files in the directory and read data from each file
# Append data to the data_list
return data_list
import matplotlib.pyplot as plt
class SinglePlotDataPlotter(DataPlotter):
def plot_data(self, data):
# Implement single plot logic here
plt.plot(data)
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Single Data Plot')
plt.show()
class AutomatedPlotDataPlotter(DataPlotter):
def plot_data(self, data_list):
# Implement automated plotting logic here
for i, data in enumerate(data_list):
plt.plot(data, label=f'Data {i+1}')
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Automated Data Plot')
plt.legend()
plt.show()
def main():
# Use data reading pipeline
csv_reader = CSVDataReader()
data_file_path = "path/to/your_data.csv"
data = csv_reader.read_data(data_file_path)
# Use automated data reading pipeline
dir_reader = DirectoryDataReader()
directory_path = "path/to/directory_with_data_files"
data_list = dir_reader.read_data(directory_path)
# Use single plot data plotting pipeline
single_plotter = SinglePlotDataPlotter()
single_plotter.plot_data(data)
# Use automated data plotting pipeline
automated_plotter = AutomatedPlotDataPlotter()
automated_plotter.plot_data(data_list)
if __name__ == "__main__":
main()
In this example, we have separated the data reading and plotting functionalities into separate classes. The DataReader
abstract class has two concrete subclasses, CSVDataReader
for reading data from a CSV file and DirectoryDataReader
for automated reading of data from a directory containing multiple files. The DataPlotter
abstract class also has two concrete subclasses, SinglePlotDataPlotter
for plotting a single dataset and AutomatedPlotDataPlotter
for automated plotting of multiple datasets.
You can customize each subclass's logic to read specific data formats or implement different plotting styles based on your requirements.
@abstractmethod
the Above ExampleThe @abstractmethod
decorator in Python is used to define methods that must be implemented in the subclasses. It ensures that the subclasses provide specific functionality as required by the base class. If a subclass doesn't implement an abstract method, Python will raise an error, forcing developers to provide the necessary functionality for the method to work properly.